Technical Math for Allied Health

Class notes

Percent Increase and Decrease, Military Time, and Geometry (module 2)

Percent Increase and Decrease: We might have a quantity that changed over time and we are interested in how much it changed, in relation to the original quantity. That is often described in percent change: percent increase (if the quantity went up) or percent decrease (if the quantity went down). In general, we have the formula below.

 $Percent\ change = \frac{change}{old\ value} = \frac{new\ value - old\ value}{old\ value} \times 100$

percent increase:
change is positive, or
percent decrease:
change is negative

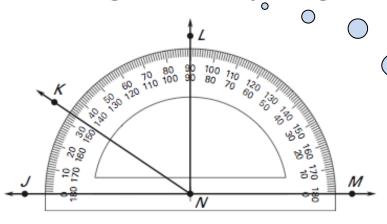
expl 1: Solve. Round to the nearest whole percent.

The cost of attending a private college rose from \$19,000 in 2000 to \$22,200 in 2006. Find the percent increase.

expl 2: Mike's health insurance premium for last year was \$1,512. If he paid \$1,440 this year, what is the percent of decrease on his health insurance premium? Round to the nearest hundredth of a percent.

expl 3: The numbers of students who passed the exit exam this semester increased 40% from last semester. If 28 people passed the exit exam last semester, how many passed the exit exam this semester?

Military Time (24 Hour Notation): The healthcare fields use military times with medical recordings. Look at the table below for equivalencies between military time and the 12-hour clock.


12-Hour Clock	Military Time	12-Hour Clock	Military Time
12:00 AM	0000 hours	12:00 pm (noon)	1200 hours
1:00 AM	0100 hours	1:00 PM	1300 hours
2:00 AM	0200 hours	2:00 PM	1400 hours
3:00 AM	0300 hours	3:00 PM	1500 hours
4:00 AM	0400 hours	4:00 PM	1600 hours
5:00 AM	0500 hours	5:00 PM	1700 hours
6:00 AM	0600 hours	6:00 PM	1800 hours
7:00 AM	0700 hours	7:00 PM	1900 hours
8:00 AM	0800 hours	8:00 PM	2000 hours
9:00 AM	0900 hours	9:00 PM	2100 hours
10:00 AM	1000 hours	10:00 PM	2200 hours
11:00 AM	1100 hours	11:00 PM	2300 hours

expl 4: Fill in the following table with the missing clock times as needed.

	12-hour Clock Time	Military Time
a)	7:15 pm	
b)	6:00 am	
c)		0336 hours
d)		1654 hours

Geometry Review

In Exercises 10-12, use the diagram to find the measure of the indicated angle. Then classify the angle.

Do you know what an acute angle is? Right? Obtuse? Straight?

- **10.** ∠*JNK*
- **11.** ∠*KNM*
- **12.** ∠*LNM*

Acute angle: Name an...

Right angle:

Obtuse angle:

Straight angle:

Complementary: sum to 90 degrees

Supplementary: sum to

180 degrees

In Exercises 13–15, \angle 1 and \angle 2 are complementary angles. Given the measure of $\angle 1$, find $m \angle 2$.

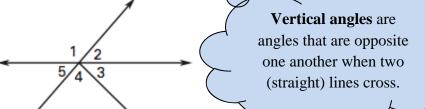
13.
$$m \angle 1 = 87^{\circ}$$

14.
$$m \angle 1 = 15^{\circ}$$

15.
$$m \angle 1 = 71^{\circ}$$

In Exercises 16–18, \angle 1 and \angle 2 are supplementary angles. Given the measure of $\angle 1$, find $m \angle 2$.

16.
$$m \angle 1 = 8^{\circ}$$


3

17.
$$m \angle 1 = 87^{\circ}$$

17.
$$m \angle 1 = 87^{\circ}$$
 18. $m \angle 1 = 115^{\circ}$

In Exercises 19–21, use the diagram. Tell whether the angles are *vertical angles*, a *linear pair*, or *neither*.

- **19.** $\angle 1$ and $\angle 2$
- **20.** $\angle 2$ and $\angle 5$
- **21.** $\angle 1$ and $\angle 4$

A **linear pair** of angles is two angles that are adjacent (side-by-side) and supplementary.