We will use tables to find a multiplier, which simplifies our formula.

We will also explore inflation.

Business Mathematics

Class notes

Interest Bearing Bank Accounts and Inflation (section 10.2)

In this section, we see accounts whose interest is compounded daily. That means 365 times a year. We could use our old formula $M = P(1 + i)^n$ or more accurately,

$$M = P \left(1 + \frac{\text{annual interest rate}}{365} \right) \text{ (number of days total)}$$

However, we will actually be using tables to look up the value of all that stuff in parentheses. The table value we get will be multiplied by the P to calculate the value of M.

Our first table is here. It shows some needed multipliers for accounts that are compounded daily. You have several (annual) interest rates and several time periods to choose from. The book has slightly different tables than those shown here.

Compound Interest for Time Deposit Accounts Compounded Daily

Number	-			-	-	Number
of Years	3%	4%	5%	6%	7%	of Years
1	1.03045326	1.04080849	1.05126750	1.06183131	1.07250098	1
2	1.06183393	1.08328232	1.10516335	1.12748573	1.15025836	2
3	1.09417024	1.12748944	1.16182231	1.19719965	1.23365322	3
4	1.12749129	1.17350058	1.22138603	1.27122408	1.32309429	4
5	1.16182708	1.22138937	1.28400343	1.34982553	1.41901993	5
10	1.34984217	1.49179200	1.64866481	1.82202895	2.01361756	10
15	1.56828318	1.82205890	2.11689128	2.45942119	2.85736345	15
					°°	

expl 1a: Find the multiplier from the table for an account that has an annual interest rate of 5% (compounded daily) for two years. Circle the value in the table.

This table calculates $(1+i)^n$ for us.

These higher interest rates are often seen in CDs (certificates of deposit).

expl 1b: Now, if we invest \$1000 into such an account, how much should we expect to have in two years? Round to two decimal places and use a dollar sign.

The next table is similar to the table we had in the last section, except that it only concerns itself with bank accounts that compound daily with an annual interest rate of 3.5%. We will again use it to simplify the calculation needed for the formula $M = P(1 + i)^n$.

Values of $\left(1+i\right)^n$ for 3½ % Compounded Daily

	Compound		Compound		Compound		Compound
Number	Amount	Number	Amount	Number	Amount	Number	Amount
of Days	Multiplier						
1	1.000095890	41	1.003939056	81	1.007796990	121	1.011669750
2	1.000191790	42	1.004035324	82	1.007893628	122	1.011766759
3	1.000287699	43	1.004131602	83	1.007990276	123	1.011863778
4	1.000383617	44	1.004227888	84	1.008086932	124	1.011960806
5	1.000479544	45	1.004324184	85	1.008183598	125	1.012057843
6	1.000575480	46	1.004420489	86	1.008280273	126	1.012154890
7	1.000671426	47	1.004516803	87	1.008376958	127	1.012251946
8	1.000767381	48	1.004613127	88	1.008473651	128	1.012349011
9	1.000863345	49	1.004709460	89	1.008570354	129	1.012446086
10	1.000959318	50	1.004805802	90	1.008667067	130	1.012543170
11	1.001055300	51	1.004902153	91	1.008763788	131	1.012640263
12	1.001151292	52	1.004998513	92	1.008860519	132	1.012737365
13	1.001247293	53	1.005094883	93	1.008957259	133	1.012834477
14	1.001343303	54	1.005191262	94	1.009054008	134	1.012931598
15	1.001439322	55	1.005287650	95	1.009150767	135	1.013028729
16	1.001535350	56	1.005384048	96	1.009247535	136	1.013125868
17	1.001631388	57	1.005480454	97	1.009344312	137	1.013223017
18	1.001727435	58	1.005576870	98	1.009441098	138	1.013320176
19	1.001823491	59	1.005673296	99	1.009537894	139	1.013417344
20	1.001919556	60	1.005769730	100	1.009634699	140	1.013514521
21	1.002015631	61	1.005866174	101	1.009731513	141	1.013611707
22	1.002111714	62	1.005962627	102	1.009828337	142	1.013708903
23	1.002207807	63	1.006059089	103	1.009925170	143	1.013806107
24	1.002303909	64	1.006155560	104	1.010022012	144	1.013903322
25	1.002400021	65	1.006252041	105	1.010118863	145	1.014000545
26	1.002496141	66	1.006348531	106	1.010215724	146	1.014097778
27	1.002592271	67	1.006445030	107	1.010312594	147	1.014195021
28	1.002688410	68	1.006541538	108	1.010409473	148	1.014292272
29	1.002784558	69	1.006638056	109	1.010506362	149	1.014389533
30	1.002880716	70	1.006734583	110	1.010603260	150	1.014486803
31	1.002976882	71	1.006831119	111	1.010700167	151	1.014584083
32	1.003073058	72	1.006927665	112	1.010797083	152	1.014681372
33	1.003169243	73	1.007024219	113	1.010894009	153	1.014778670
34	1.003265438	74	1.007120783	114	1.010990944	154	1.014875977
35	1.003361641	75	1.007217357	115	1.011087889	155	1.014973294
36	1.003457854	76	1.007313939	116	1.011184842	156	1.015070621
37	1.003554076	77	1.007410531	117	1.011281805	157	1.015167956
38	1.003650307	78	1.007507132	118	1.011378777	158	1.015265301
39	1.003746548	79	1.007603742	119	1.011475759	159	1.015362655
40	1.003842797	80	1.007700362	120	1.011572750	160	1.015460019

Values for $(1+i)^n$ were calculated using n as the number of days and i = .035/365

expl 2: Find the compound amount for the CD below. Assume daily compounding.

Amount deposited \$8,000 Interest rate 4% Time in years 1

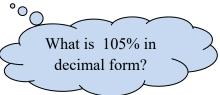
expl 3: Find the interest earned for the account below. Assume it is compounded daily at 3.5%.

Amount \$12,000
Date deposited Dec. 3
Date withdrawn Feb. 20

Use our Number of Each of the Days of the Year table.

Multiple Withdrawals and Deposits:

Some problems will involve multiple withdrawals or deposits. These are more complicated. We will use the worksheet here to explore them. An example of multiple deposits is shown in the book.


Worksheet: Banking application: Savings account with multiple withdrawals:

The first example is done fully for you. Read it aloud to get the most out of it. There are two practice problems that follow.

Inflation:

Definition: Inflation: the continual rise in the price of goods and services. For example, every year stuff gets more expensive, say 3% more.

We might see a report that inflation is 5% per year. This means that, roughly speaking, \$1,000 in merchandise this year will cost 105% of that next year. What is 105% of \$1,000?

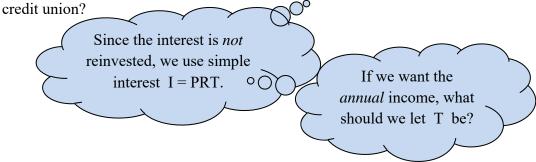
Problems will involve inflation and **purchasing power**. The purchasing power is the amount of goods and services that can be purchased with a unit of currency. (source: Wikipedia)

expl 4: A family with an income and spending budget of \$32,400 receives an increase in income of 1% (after taxes) in a year when inflation is 2.8%. Find the net gain or loss in purchasing power. Follow these steps.

Do you *think* they will come out ahead or not? Why?

a.) What will the new wages be after that raise?

b.) How much will their spending budget be after inflation is taken into account?


What cost \$32,400 last year will cost how much this year?

c.) Does this family have a net gain or loss? How much?

Compound Accounts with Interest Withdrawn:

Some investments are set up so that the earned interest is *not* reinvested but, rather, withdrawn to be used as income. In these cases, the interest does *not* compound and so we will use simple interest for these problems. Look at the situation below.

expl 5: The Romero's have retired with \$500,000 to invest. They plan to use the interest for living expenses. The Romero's credit union offers a 5-year time deposit that earns 2.5%. A credit union across town offers a 5-year time deposit that earns 3%. Calculate the *annual* income for each of these investments. How much more would they make by investing with the second

