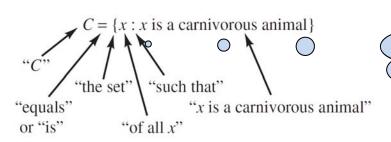
We start organizing similar things in groups using special notation. To what sets do you belong?

General Education Mathematics Class Notes

The Language of Sets (Section 2.1)

Definitions: A **set** will be defined as a collection of objects. The individual objects in a set are called **elements** or **members**.


 \bigcirc

You might be described as belonging to the set of "humans" or "students". Can you think of other "sets" to which you belong?

We will denote a set by **listing** and **set-builder notations**. The listing method is exactly that, a listing. We will separate elements by commas and put the fancy, curly set brackets around them.

I might list out the set of people in my family as {Stef, Joel, Savvy, Penn, Bat}. I might even call this set F and write F = {Stef, Joel, Savvy, Penn, Bat}.

Set-builder notation gives us a more formal way of denoting sets. It's also good when I cannot list all the elements. Consider the set of all carnivorous animals. Here is the set in set-builder notation. The phrases below show how you say it all; read it from left to right.

Sometimes, you will see a vertical line | instead of the colon shown here.

Notice how it would *not* be easy to write this set in listing notation.

Definition: A set is **well-defined** if we are able to tell whether any particular object is an element of that set.

expl 1: Are these sets well-defined?

a.) the set of even numbers

- b.) $\{x : x \text{ is tall}\}$
- c.) $\{m : m \text{ is an even number and is a letter}\}$
- d.) {5, 9, 11, 47, 50}

The set in example 1c has no elements at all. We will use the concept of a set with no elements quite a lot.

Definition: The set that contains no elements is called the **empty set** or **null set.** This set is labeled by the symbol \varnothing . Another notation for the empty set is $\{\}$.

You will see the ellipsis (the ... symbol) used in set notation. It is perfectly acceptable to write the set of natural numbers through 100 as $\{1, 2, 3, ..., 100\}$. However, when you use an ellipsis, make sure the pattern is actually established. I would *not* want to denote the set $\{5, 9, 11, 47, 50\}$ as $\{5, 9, 11, ...\}$ as no one would see the pattern. (Indeed, there is none since these are the ages of people in my family.)

Definition: The **universal set** is the set of all elements under consideration in a given discussion. We often denote the universal set by the capital letter U.

If we were studying the dental habits of teenagers, the universal set might be $U = \{x : x \text{ is a teenager}\}$. I might then select a few to study and call that set

S = {Bobbie, Carol, Tom, Stan, Barbra, Jenny}.

Yeah, I just made those people up.

Common Sets of Numbers:

Natural numbers: $N = \{1, 2, 3, ...\}$

Whole numbers: $W = \{0, 1, 2, 3, ...\}$

Real numbers: $R = \{x : x \text{ can be represented on a number line}\}$

Can you draw a number line?

Integers: $I = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

Rational numbers: $Q = \{x : x \text{ can be written in the form } \frac{a}{b} \text{ where } a \text{ and } b \text{ are both integers and } b \text{ is not } 0\}$

expl 2: Write each set using listing notation.

- a.) The natural numbers that are less than 30 and divisible by 6
- b.) The days of the week with eight or more letters

expl 3: Write each set using set-builder notation. O Try to be specific.

Leave no room for misunderstanding.

b.) The days of the week with eight or more letters

Elements of a Set Notation:

We need to be able to talk about the elements in a set. The **notations** \in **and** \notin are used to denote whether an element is in a set or not, respectively. For instance, we will write $6 \in I$ to mean that "6 is an element of the set of integers".

expl 4: Fill in the missing symbol (\in or \notin) to complete the statement.

a.) 11 {5, 9, 11, 47, 50}	b.) Mazda $\underline{\hspace{1cm}} \{x : x \text{ is a car company}\}$
c.) 10 {2, 4, 6, 8}	d.) Apple {a : a is an actor}

Definition: Cardinal number: The number of elements in set A is called the cardinal number or **cardinality** of set A and is denoted n(A). You may see the alternative |A|.

A set is finite if its cardinal number is a whole number. An infinite set is one that is *not* finite.

expl 5: Say if each set is finite or infinite. Find the cardinal number of each finite set. Use the

n(A) notation, using the appropriate letter for the set.

- a.) $V = \{x : x \text{ is a vowel in the English alphabet}\}$
- b.) S = {Bobbie, Carol, Tom, Stan, Barbra, Jenny}
- c.) $T = \{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots\}$
- d.) $Y = \{2, 4, 6\}$

e.) Ø

f.) $P = \{ \{2, 4\}, \{2, 4, 6\}, \{2, 4, 6, 8\} \}$

We will focus on finite sets. However, set theorists do use cardinality to compare the number of elements in infinite sets also.

> Does the set of Integers have the same number of elements as the set of Positive Integers?

What are the elements of this set? How many are there?

Worksheet: Sets introduction:

We will practice the meaning and notation of sets.

expl 6: Find an element of set A that is *not* an element of set B.

 $A = \{x : x \text{ is an integer}\}\$

 $B = \{x : x \text{ is an even number}\}\$

Can you find an element of set B that is not an element of set A?

Sets Reference Sheet:

Complete this list as we proceed through chapter 2. There are extra spots in case you want to add your own items.

Symbol	Meaning
capital letter A	set A
Ø or { }	empty set
U	Universal set
€	is an element of
∉	is <i>not</i> an element of
n(A)	the number of elements in set A
A = B	
A / D	
$A \neq B$	
A↔B	Sets A and B are equivalent sets
$A \leftrightarrow D$	Sets A and B are equivalent sets
$A \subseteq B$	
$\prod \subseteq D$	
A ⊈ B	
A⊂B	
A⊄B	
A U B	
$A \cap B$	
A' or \overline{A}	
B - A	
r_1	region r_1 in a Venn diagram
	<u>I</u>