We will draw approximate solutions curves for 1st-order diff. eq. initial value problems.

Differential Equations

Class Notes

Class Notes
The Approximation Method of Euler (Section 1.4)

Definition: Euler's Method (or tangent line method): Euler's Method is a procedure for constructing approximate solutions to an initial value problem for a first-order diff. eq. $y' = f(x, y), \quad y(x_0) = y_0.$

It is a mechanical or computerized method of sketching a solution by hand using the direction field.

First, recognize that if we define y' = f(x, y), then f(x, y) is the slope of the solution curve y at the point (x, y) as before. Do not let the switch in our notation distract you.

> Remember that f is the derivative of y with respect to x.

What we will do:

Start at (x_0, y_0) and find $f(x_0, y_0)$. This is the slope of y at this point so draw a tangent line segment (with that slope) until we get to a second point we'll call (x_1, y_1) . Rinse and repeat.

So, we will next find $f(x_1, y_1)$ and use that to draw another tangent line segment to get to a third point (x_2, y_2) . Repeat, repeat... Oh, bless the mighty computer! All bow to our computer overlords!

Our book illustrates this nicely.

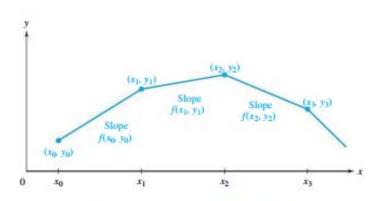


Figure 1.15 Polygonal-line approximation given by Euler's method

So how do we pick the points we use?

We start with (x_0, y_0) which is given to us. It is called the initial condition. You decide (or are told) the step size h to use. This **step size** is the difference between successive x-values.

Euler's Method Procedure:

For first-order diff. eq. y' = f(x, y) with initial condition (x_0, y_0) and step size h, we use the following formulas.

$$x_{n+1} = x_n + h$$

· O C

The book shows the formulas' derivations.

$$y_{n+1} = y_n + h \cdot f(x_n, y_n)$$
 where $n = 0, 1, 2, ...$

We will do this once by hand in class so you see the process slowly. However, I will expect you to use an online calculator for homework.

expl 1: Use Euler's method to approximate the solution to the following initial value problem at the points x = 0.1, 0.2, 0.3, 0.4, 0.5 (using step size h = 0.1). We will use the table below to organize.

 $\frac{dy}{dx} = x + y \,, \quad y(0) = 1$

Use the given formula for dy/dx.

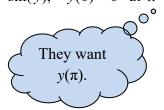
To find the next x and y, use Euler's formulas.

x	y o	dy/dx	formula work
$x_0 = 0$	Ů		
$x_1 = 0.1$			
$x_2 = 0.2$			
$x_3 = 0.3$			
$x_4 = 0.4$			
$x_5 = 0.5$		(do not need)	

Online Euler calculator:

We will use an online calculator. There is a link from www.stlmath.com but its direct address is www.math-cs.gordon.edu/~senning/desolver. You can find others on the Internet.

expl 2: Use Euler's method to find approximations to the solution of the initial value problem $y' = 1 - \sin(y)$, y(0) = 0 at $x = \pi$ taking 1, 2, 4, and 8 steps.



We will play with N, the number of steps between x_0 and the final x-value.

First, what is (x_0, y_0) ?

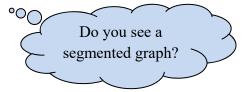
What will our x-values be if we take 1, 2, 4, or 8 steps?

Our final *x*-value is always what?

Number of steps, N	The values of x , or x_i	Step size,
1		
2		
4		
8		

We will see this online calculator in class. The following should be kept in mind.

- -- The online calculator uses the variables (t, y).
- -- They use t_1 to mean the *final* t-value (or x-value, using the other assignment of variables).
- -- You need to use multiplication signs and parentheses where applicable.
- -- You can use "pi" for π .
- -- Select "Graph and Data points" under "Output format".
- -- Step size h (remember, *not* the same as N) needs to be a fraction or decimal. You *cannot* use "pi" but you can use 3.14 in its place.
- -- The output is an approximate graph of the solution function y. The rudimentary table shows x and y-values along the way. The final y-value in the table is our desired y-value.



expl 2 continued: Record the various values of $y(\pi)$ here.

Step size, h	Output value for $y(\pi)$
π	
π/2	
$\pi/4$	
π/8	

Which value of $y(\pi)$ would you say was likely the most accurate approximation?

 $^{\circ}$

...But more steps bring more computations and hence greater roundoff error.

Finding a step size within an acceptable margin of error:

expl 3: Use the strategy of example 3 [in book] to find a value of h for Euler's method such that y(1) is approximated to within ± 0.01 , if y(x) satisfies the initial value problem y' = x - y, y(0) = 0.

Also, find, within ± 0.05 , the value of x_0 such that $y(x_0) = 0.2$. Compare your answers with those given by the actual solution $y = e^{-x} + x - 1$.

Use the online calculator to fill in the table.

Plan: Repeatedly use Euler's method to approximate y(1), halving h each time until the approximations are less than 0.01 apart. Use online calculator.

Number of steps	Value of <i>h</i> , step size	Value given for y(1) (Do not round.)
2		
4		
8		6
16		
32		
64		6

Round *final* y(1) value to two decimal places. Include ± 0.01 .

Quoting Ordinary Differential Equations (Tenenbaum, Pollard, 1985, p. 638): "A check on errors is to make all calculations over again with h half the size of the original h. If the result (from smaller h) agree with those from larger h to k decimal places, after being properly rounded off, then assume their common numerical value has k decimal place accuracy."

So, how close is our approximation? Use the given solution $y = e^{-x} + x - 1$ to find y(1) to compare.

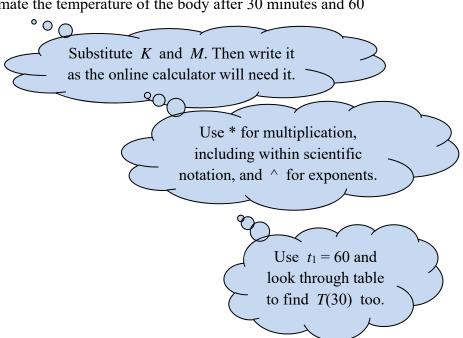
For the second question, we are asked to find, within ± 0.05 , the value of x_0 such that $y(x_0) = 0.2$. We use h to be 0.1. That's twice the needed error of 0.05. You'll see why in a second. Use the online calculator to partially fill in the table.

x	y	
0	0	
0.1		
0.2		
0.3		
0.4		
0.5		
0.6		
0.7		
		NII :
0.8		Where is
		$y(x_0) = 0.2$ as
0.9		they ask for?
1.0		

Phrase your answer as a number rounded to two decimal places with ± 0.05 . Check it against the actual solution.

expl 4: **Stefan's Law of Radiation:** This law states that the rate of change in temperature of a body at T(t) kelvins in a medium at M(t) kelvins is proportional to $M^4 - T^4$. That is,

 $\frac{dT}{dt} = K\left(M\left(t\right)^4 - T\left(t\right)^4\right)$ where $K \in \mathbb{R}$. Let $K = 2.9 \times 10^{-10} \, (\text{min})^{-1}$ and assume that the medium temperature is constant, $M \equiv 293 \, \text{kelvins}$. If $T(0) = 360 \, \text{kelvins}$, use Euler's method with $h = 3.0 \, \text{minutes}$ to approximate the temperature of the body after 30 minutes and 60 minutes.



Worksheet: Euler's Method for Approximating Function Values:

This worksheet practices Euler's method to approximate values of the unknown solution function. We also explore finding the value of the independent variable given the solution's value, to within a certain margin of error.