
Natural logarithm cheatsheet

The following graphs are of $f(x) = e^x$ and $f(x) = \ln(x)$. Notice they are inverses of each other. Notice the domain of $f(x) = \ln(x)$ is $(0, \infty)$.

Equivalent relationship between exponential equations and logarithmic equations

 $x = e^{y}$ is exactly equivalent to $y = \ln x$

It is often beneficial to interpret this as "ln x is the number to which I raise e to get x".

Logarithm Rules

Let a and c be positive real numbers. Let b be a real number.

1.
$$\ln(a^b) = b \ln(a)$$

2.
$$\ln 1 = 0$$

3.
$$\ln e = 1$$

4.
$$e^{\ln a} = a$$

5.
$$\ln e^b = b$$

6.
$$\ln(a * c) = \ln a + \ln c$$

7.
$$\ln\left(\frac{a}{c}\right) = \ln a - \ln c$$

Derivatives

$$\frac{d}{dx}(\ln x) = \frac{1}{x}, \quad x > 0$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x}, \quad x > 0$$

$$\frac{d}{dx}(\ln(g(x))) = \frac{g'(x)}{g(x)}$$

$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}, \quad x \neq 0$$

$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}, \quad x \neq 0$$